Actions

Furnace

From Unofficial Stationeers Wiki

Revision as of 16:54, 4 August 2024 by 216.196.181.219 (talk)
Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎русский
Kit (Furnace)
ItemKitFurnace.png
Volume 1000 L
Recipe
Created With Autolathe, Fabricator
Cost 30g Iron, 10g Copper
Logic
Logic Parameters
  • Open
  • Pressure
  • Temperature
  • Lock
  • Setting
  • Reagents
  • RatioOxygen
  • RatioCarbonDioxide
  • RatioNitrogen
  • RatioPollutant
  • RatioVolatile
  • RatioWater
  • Maximum
  • Ratio
  • ImportQuantity
  • ImportSlotOccupant
  • ExportQuantity
  • ExportSlotOccupant
Furnace
Furnace.jpg
Construction
Placed with Kit (Furnace)
Placed on Small Grid
Stage 1
Next Stage Construction
Constructed with tool Wrench
Constructed with item 2x Iron Sheets
Deconstruction
Deconstructed with Crowbar
Item received Kit (Furnace)
Stage 2
Next Stage Construction
Constructed with tool Welding Torch
Constructed with item 2x Iron Sheets
Deconstruction
Deconstructed with Crowbar
Item received 2x Iron Sheets
Stage 3
Deconstruction
Deconstructed with Angle Grinder
Item received 2x Iron Sheets


Description

Used to smelt ore into ingots and alloys using an oxygen/volatile gas mix. Ice (Oxite) and Ice (Volatiles) can be manually input directly in the furnace in order to create crude gas mixtures, or to be directly extracted as an easy trick for melting the ice.

If the contents of the furnace are ejected without reaching the required temperature and pressure for smelting, they'll come out as Reagent Mix which can be processed in a Centrifuge to recover the raw ores. Reagent Mix can also be re-smelted if the ingredients and ratios are a valid alloy recipe. This allows an intermission when the resources for reaching the required temperature / pressure are not on hand / need to be gathered first. Effectively, this means that the used metals can be 'reserved' for the intended alloy.

The Furnace can be used to smelt basic ores and simpler alloys, but an Advanced Furnace will be required for the more complex alloys.

An Arc Furnace (included in the starting gear) is required to make the metals for manufacturing a Furnace. By comparison, the Furnace can do everything the Arc Furnace can do, but without using electricity.

Recipes

While smelting steel is easily achieved with ice, other recipes usually require a working piping setup (a valve and passive vent at bare minimum to vent the internal gasses). This can be done by separating gases into tanks using atmospheric units and piping individual gases through a mixer and a Pressure Regulator or a Pipe Volume Pump connected to the furnace input. Output should also be extracted and vented/recycled through a backpressure regulator to keep furnace pressure in check. The optimal gas mix that burns completely is 1 part (33.3%) oxygen to 2 parts (66.6%) volatiles, other mixes would also work but leave you with leftover oxygen or volatiles depending on the percentages used. It could also result in lower temperature if that is desired, but you could also use a volume pump with a lower fuel input setting.


Make sure to put the fuel in first, then press the activate button. Afterwards put in the ingredients and press the handle after you see the "will produce" while hovering over the furnace. Also, You MUST put in exact amounts matching the recipe amounts. For instance, you must put in 12 iron and 4 coal to make 16 steel. You cannot put in 12 iron and 7 coal. The furnace will not manufacture anything if the ingredient ratios are not correct and you will have to eject it all or add resources to balance the recipe.

Ingot Input Pressure (MPa) Temperature (K) Temperature (°C)
Min Max Min Max Min Max
ItemCharcoal.png
1
Charcoal
ItemOrganicMaterial.png
1
Biomass
0.1 MPa 100 MPa 580 K 100 kK 307°C 99726°C
ItemSiliconIngot.png
1
Silicon
ItemSiliconOre.png
1
Silicon
0.1 MPa 100 MPa 900 K 100 kK 627°C 99726°C
ItemIronIngot.png
1
Iron
ItemIronOre.png
1
Iron
0.1 MPa 100 MPa 800 K 100 kK 527°C 99726°C
ItemGoldIngot.png
1
Gold
ItemGoldOre.png
1
Gold
0.1 MPa 100 MPa 600 K 100 kK 327°C 99726°C
ItemCopperIngot.png
1
Copper
ItemCopperOre.png
1
Copper
0.1 MPa 100 MPa 600 K 100 kK 327°C 99726°C
ItemSilverIngot.png
1
Silver
ItemSilverOre.png
1
Silver
0.1 MPa 100 MPa 600 K 100 kK 327°C 99726°C
ItemLeadIngot.png
1
Lead
ItemLeadOre.png
1
Lead
0.1 MPa 100 MPa 400 K 100 kK 127°C 99726°C
ItemNickelIngot.png
1
Nickel
ItemNickelOre.png
1
Nickel
0.1 MPa 100 MPa 800 K 100 kK 527°C 99726°C
ItemSteelIngot.png
4
Steel
ItemIronOre.png
3
Iron
ItemCoalOre.png
1
Coal
1 MPa 100 MPa 900 K 100 kK 627°C 99726°C
ItemElectrumIngot.png
2
Electrum
ItemSilverOre.png
1
Silver
ItemGoldOre.png
1
Gold
0.8 MPa 2.4 MPa 600 K 100 kK 327°C 99726°C
ItemInvarIngot.png
2
Invar
ItemIronOre.png
1
Iron
ItemNickelOre.png
1
Nickel
18 MPa 20 MPa 1.2 kK 1.5 kK 927°C 1227°C
ItemConstantanIngot.png
2
Constantan
ItemCopperOre.png
1
Copper
ItemNickelOre.png
1
Nickel
20 MPa 100 MPa 1 kK 10 kK 727°C 9726°C
ItemSolderIngot.png
2
Solder
ItemIronOre.png
1
Iron
ItemLeadOre.png
1
Lead
1 MPa 100 MPa 350 K 550 K 77°C 277°C
Update 0.2.2768.13597 - Thu 11/02/2021 /Recipes

Tips

  • Placing 15 ice(volatiles) and 15 ice(oxite) will bring pressure to around 22000kpa and temp 2000k. For Invar, you will have to wait for the temperature to drop before you can process. You can use this time while the pressure is still over 20000kpa to make constantan.
  • All other alloys can be achieved with a ratio of 2 volatiles to 1 oxite
  • If atmosphere inside and/or around furnace is too cold to melt ice one can press 'activate' button to manually melt one ice per ignition attempt. You will need to press the ignition button for each piece of ice from the first stack that you put in. Until all solid matter was melted the import slot will remain blocked.
  • Reagent Mix can be re-melted to continue balancing the recipe should you need to gather more resources or find yourself unable to balance the temperature/pressure manually.

Some example fuel mixes

Prime FAR In: Mols Result Out: Mols
H2 O2 Press. Celcius Kelvin O2 H2 Co2 X
100 kPa 2:1 29 14 2 135 1 953 2 216 1 3 82 33
200 kPa 2:1 59 29 4 500 2 000 2 273 1 5 169 80
200 kPa 3:1 65 21 3 400 1 900 2 173 2 26 118 52
200 kPa 4:1 72 18 3 000 1 800 2 273 1 40 99 42
200 kPa 1:1 43 43 3 493 1 917 2 190 22 2 127 59
200 kPa 1:4 17 68 1 646 1 319 1 592 63 2 50 18
300 kPa 2:1 86 42 6 850 2 109 2 382 2 7 242 115
902.7 kPa 2:1 263 108 19.25 MPa 2 054 2 357 70 7 767 151
1 MPa 2:1 291 120 21.62 MPa 2 061 2 334 74 7 862 170
1.497 MPa 2:1 408 204 35.34 MPa 2 121 2 394 10 20 1163 581

Some example alloy recipes

Ice Chunks Ingredients Temperature Pressure Alloy
ItemVolatiles.png
2
Volatiles
ItemOxite.png
1
Oxite
ItemIronOre.png
75
Iron Ore
ItemCoalOre.png
25
Coal
1.05 kK 6.2 MPa
ItemSteelIngot.png
100
Steel
ItemVolatiles.png
12
Volatiles
ItemOxite.png
6
Oxite
ItemCopperOre.png
50
Copper Ore
ItemNickelOre.png
50
Nickel Ore
1.81 kK 21 MPa
ItemConstantanIngot.png
100
Constantan
ItemVolatiles.png
8
Volatiles
ItemOxite.png
24
Oxite
ItemNickelOre.png
50
Nickel Ore
ItemIronOre.png
50
Iron Ore
1.5 kK 19 MPa
ItemInvarIngot.png
100
Invar
ItemVolatiles.png
1
Volatiles
ItemOxite.png
1
Oxite
ItemSilverIngot.png
50
Silver Ingot
ItemGoldIngot.png
50
Gold Ingot
997 K 1.1 MPa
ItemElectrumIngot.png
100
Electrum
ItemVolatiles.png
1
Volatiles
ItemNitrice.png
2
Nitrice
ItemIce.png
3
Water Ice
ItemLeadIngot.png
50
Lead Ingot
ItemIronOre.png
50
Iron Ore
528 K 1.16 MPa
ItemSolderIngot.png
100
Solder

Data Network Properties

These are all Data Network properties of this device.

Data Parameters

These are all parameters that can be written with a Logic Writer, Batch Writer, or Integrated Circuit (IC10).


Parameter Name Data Type Description
Activate Boolean Activates the Furnace, when set to 1.
ClearMemory Boolean When set to 1,clears the counter memory(e.g.ExportCount). Will set itself back to 0 when actioned.
Lock Boolean Locks the Furnace, when set to 1. Unlocks it when set to 0.
Mode Integer (Unknown).
Open Boolean Opens the Furnace, when set to 1. Closes it, when set to 0.
Setting Float (Unknown) Affects the Setting output.

Data Outputs

These are all parameters, that can be read with a Logic Reader or a Slot Reader. The outputs are listed in the order a Logic Reader's "VAR" setting cycles through them.

Output Name Data Type Description
Activate Boolean Returns if the furnace is active.
Combustion Boolean Returns 1 if the furnace atmosphere is on fire.
ExportCount Integer How many items exported since last ClearMemory.
ImportCount Integer How many items imported since last ClearMemory.
Lock Boolean Returns whether the Furnace is locked.
Maximum Integer (Unknown) Returns 100.
Mode Integer (Unknown).
Open Boolean Returns whether the Furnace is open. (0 for no, 1 for yes).
PrefabHash Integer The hash of the structure.
Pressure Float Returns the pressure in the Furnace in kilo pascal.
Ratio Float (Unknown) Returns 0.5.
RatioCarbonDioxide Float Returns a range from 0.0 to 1.0. Returns the percentage ratio of the amount of carbon dioxide in the Furnace.
RatioNitrogen Float Returns a range from 0.0 to 1.0. Returns the percentage ratio of the amount of nitrogen in the Furnace.
RatioNitrousOxide Float Returns a range from 0.0 to 1.0. Returns the percentage ratio of the amount of nitrous oxide in the Furnace.
RatioOxygen Float Returns a range from 0.0 to 1.0. Returns the percentage ratio of the amount of oxygen in the Furnace.
RatioPollutant Float Returns a range from 0.0 to 1.0. Returns the percentage ratio of the amount of pollutant in the Furnace.
RatioVolatiles Float Returns a range from 0.0 to 1.0. Returns the percentage ratio of the amount of volatiles in the Furnace.
RatioWater Float Returns a range from 0.0 to 1.0. Returns the percentage ratio of the amount of water in the Furnace.
Reagents Float Returns the amount of reagents (smeltable ores, not counting ice) in the Furnace, in grams.
RecipeHash int Current hash of the recipe the device is set to produce.
Setting Float (Unknown) Affected by the Setting parameter.
Temperature Float Returns the temperature in the Furnace in kelvin.
TotalMoles Float Returns the total moles of the furnace.