Actions

Editing Filtration

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 28: Line 28:
 
Be aware that the filtration unit unrealistically has an infinitely powerful pump integrated into its output port. That means as long as it is turned on and there is gas to filter out from the input, it will pump that filtered out gas into the output pipe network (no matter how high the pressure in that output pipe network already is!). So eventually that pipe network will burst (around 60 MPa) unless you provide some sort of pop-off valve (e.g. a combination of a back-pressure regulator and a passive vent), use a pipe analyzer and some logic to turn the filtration unit off when a certain amount of pressure is exceeded in the output pipe network, or use the onboard IC10 and a data connection to the output (tank or pipe analyzer) to disable the unit when it reaches a certain threshold.  Note that on-board IC10 chips do not execute when the unit is turned off, so an '''on-board''' IC10 is only capable of turning the unit '''off''' if output pressure is too high, it is not capable of turning the unit back '''on''' once output pressure drops.
 
Be aware that the filtration unit unrealistically has an infinitely powerful pump integrated into its output port. That means as long as it is turned on and there is gas to filter out from the input, it will pump that filtered out gas into the output pipe network (no matter how high the pressure in that output pipe network already is!). So eventually that pipe network will burst (around 60 MPa) unless you provide some sort of pop-off valve (e.g. a combination of a back-pressure regulator and a passive vent), use a pipe analyzer and some logic to turn the filtration unit off when a certain amount of pressure is exceeded in the output pipe network, or use the onboard IC10 and a data connection to the output (tank or pipe analyzer) to disable the unit when it reaches a certain threshold.  Note that on-board IC10 chips do not execute when the unit is turned off, so an '''on-board''' IC10 is only capable of turning the unit '''off''' if output pressure is too high, it is not capable of turning the unit back '''on''' once output pressure drops.
  
βˆ’
As of patch [https://steamcommunity.com/app/544550/eventcomments/3812910660676171439 patch 0.2.4218.19726], the filtration system processing speed is based the difference between the pressure of input and '''higher pressure''' of the two outputs.  If the higher-pressure output is equal to or higher than the input pressure, the unit will process an amount of input gas equivalent to 10 MPa per litre, per tick, with the amount pushed to the two outputs based on the partial pressure of the gas being filtered in the input.  For example, if a unit is set to filter nitrogen, and the input is 20% at 10 MPa, and the higher of the two outputs is at >= 10 MPa (for example, if the waste output is connected back to the input), then the unit will push, per tick, 2 MPa-litres (ie. 200 kPa in a single 10 L pipe segment) to the filtered output, and 8 MPa-litres to the waste output.   
+
As of patch [https://steamcommunity.com/app/544550/eventcomments/3812910660676171439 patch 0.2.4218.19726], the filtration system processing speed is based the difference between the pressure of input and '''higher pressure''' of the two outputs.  If the higher-pressure output is equal to or higher than the input pressure, the unit will process an amount of input gas equivalent to 10 MPa per litre, per tick, with the amount pushed to the two outputs based on the partial pressure of the gas being filtered in the input.  For example, if a unit is set to filter nitrogen, and the input is 20% at 10 MPa, and the higher of the two outputs is at >= 10 MPa (for example, if the waste output is connected back to the input), then the unit will push, per tick, 2 MPa per litre (ie. 200 kPa in a single 10 L pipe segment) to the filtered output, and 8 MPa per litre to the waste output.   
  
βˆ’
If the pressure of the highest-pressure output is less than the input pressure, the unit will process per tick will be equal to 10 MPa*L + (PressureDifferential * 3.16885) MPa*L, where the PressureDifferential is the input pressure minus the output pressure, in MPa.  As above, this output is split between the filtered output and the waste output based on the partial pressure of the filtered gas in the input.  As an example, if the input pressure is 10 MPa at 20% nitrogen, and the higher-pressure of the outputs is at 2 MPa, the unit will process 1 + (10-2) * 3.16885 = 35.351 MPa*L, which is equivalent to increasing the pressure of a single 10 L pipe segment by 3.5351 MPa.  20% of this, or 7.07 MPa*L, would be pushed to the output (if the output is a single 10 L pipe segment, this would increase its pressure by 707 kPa), and the remaining 80% (28.28 MPa*L) would be pushed to the waste output.
+
If the pressure of the highest-pressure output is less than the input pressure, the unit will process per tick will be equal to 10 MPa/L + (PressureDifferential * 3.16885) MPa/L, where the PressureDifferential is the input pressure minus the output pressure, in MPa.  As above, this output is split between the filtered output and the waste output based on the partial pressure of the filtered gas in the input.  As an example, if the input pressure is 10 MPa at 20% nitrogen, and the higher-pressure of the outputs is at 2 MPa, the unit will process 1 + (10-2) * 3.16885 = 35.351 MPa/L, which is equivalent to increasing the pressure of a single 10 L pipe segment by 3.5351 MPa.  20% of this, or 7.07 MPa/L, would be pushed to the output (if the output is a single 10 L pipe segment, this would increase its pressure by 707 kPa), and the remaining 80% (28.28 MPa/L) would be pushed to the waste output.
  
 
In effect, if the waste output is connected to the input, and the filtered output is a single pipe segment (followed by a pump), the rate of output for the filtered gas will be 10 kPa per tick multiplied by the percentage of gas in the input that matches the filter (ex. if 20% nitrogen, 200 kPa to that single pipe segment per tick).  If both the outputs are instead single pipe segments fed into volume pumps, so they remain at 0 pressure at all times, the rate of output of the filtered gas will be the percentage of the gas in the input that matches the filter multiplied by 1 MPa + 31.69% of the pressure of the input (ex. 10 MPa input, 20% nitrogen, the single pipe segment on the filtered output would gain 0.2 * (1 + 3.169) = 834 kPa per tick).
 
In effect, if the waste output is connected to the input, and the filtered output is a single pipe segment (followed by a pump), the rate of output for the filtered gas will be 10 kPa per tick multiplied by the percentage of gas in the input that matches the filter (ex. if 20% nitrogen, 200 kPa to that single pipe segment per tick).  If both the outputs are instead single pipe segments fed into volume pumps, so they remain at 0 pressure at all times, the rate of output of the filtered gas will be the percentage of the gas in the input that matches the filter multiplied by 1 MPa + 31.69% of the pressure of the input (ex. 10 MPa input, 20% nitrogen, the single pipe segment on the filtered output would gain 0.2 * (1 + 3.169) = 834 kPa per tick).

Please note that all contributions to Unofficial Stationeers Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Unofficial Stationeers Wiki:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel | Editing help (opens in new window)