Difference between revisions of "Guide (Filtration)"
From Unofficial Stationeers Wiki
(Moving advanced feature and math information to the guide page to clean up the main summary page.) |
|||
| (2 intermediate revisions by one other user not shown) | |||
| Line 1: | Line 1: | ||
| − | Place the | + | Place the appropriate [[filter]](s) in the Filtration unit for the particular [[gas]] that your want to filter. Up to two filters can be placed into a filtration unit. If these are different types of filters, both types of gas will be filtered simultaneously. Placing two of the same type of filter in the unit does not increase filtration speed, it just provides redundancy for when one of the filters runs out. Running the unit with no gas to filter out of the input mixture (or with no input gas mixture present whatsoever) will not drain the filter capacity, but will waste the power to operate it. Running the unit with exhausted filters will work as if no filters are attached, and simply move all the input gas into the waste output. |
| − | + | ||
| − | + | Be aware that the filtration unit unrealistically has an infinitely powerful pump integrated into its output port. That means as long as it is turned on and there is gas to filter out from the input, it will pump that filtered out gas into the output pipe network (no matter how high the pressure in that output pipe network already is!). So eventually that pipe network will burst (around 60 MPa) unless you provide some sort of pop-off valve (e.g. a combination of a back-pressure regulator and a passive vent), use a pipe analyzer and some logic to turn the filtration unit off when a certain amount of pressure is exceeded in the output pipe network, or use the onboard IC10 and a data connection to the output (tank or pipe analyzer) to disable the unit when it reaches a certain threshold. Note that on-board IC10 chips do not execute when the unit is turned off, so an '''on-board''' IC10 is only capable of turning the unit '''off''' if output pressure is too high, it is not capable of turning the unit back '''on''' once output pressure drops. | |
| − | + | ||
| − | + | As of patch [https://steamcommunity.com/app/544550/eventcomments/3812910660676171439 patch 0.2.4218.19726], the filtration system processing speed is based the difference between the pressure of input and '''higher pressure''' of the two outputs. If the higher-pressure output is equal to or higher than the input pressure, the unit will process an amount of input gas equivalent to 10 MPa per litre, per tick, with the amount pushed to the two outputs based on the partial pressure of the gas being filtered in the input. For example, if a unit is set to filter nitrogen, and the input is 20% at 10 MPa, and the higher of the two outputs is at >= 10 MPa (for example, if the waste output is connected back to the input), then the unit will push, per tick, 2 MPa-litres (ie. 200 kPa in a single 10 L pipe segment) to the filtered output, and 8 MPa-litres to the waste output. | |
| − | + | ||
| − | If | + | If the pressure of the highest-pressure output is less than the input pressure, the unit will process per tick will be equal to 10 MPa*L + (PressureDifferential * 3.16885) MPa*L, where the PressureDifferential is the input pressure minus the output pressure, in MPa. As above, this output is split between the filtered output and the waste output based on the partial pressure of the filtered gas in the input. As an example, if the input pressure is 10 MPa at 20% nitrogen, and the higher-pressure of the outputs is at 2 MPa, the unit will process 1 + (10-2) * 3.16885 = 35.351 MPa*L, which is equivalent to increasing the pressure of a single 10 L pipe segment by 3.5351 MPa. 20% of this, or 7.07 MPa*L, would be pushed to the output (if the output is a single 10 L pipe segment, this would increase its pressure by 707 kPa), and the remaining 80% (28.28 MPa*L) would be pushed to the waste output. |
| + | |||
| + | In effect, if the waste output is connected to the input, and the filtered output is a single pipe segment (followed by a pump), the rate of output for the filtered gas will be 10 kPa per tick multiplied by the percentage of gas in the input that matches the filter (ex. if 20% nitrogen, 200 kPa to that single pipe segment per tick). If both the outputs are instead single pipe segments fed into volume pumps, so they remain at 0 pressure at all times, the rate of output of the filtered gas will be the percentage of the gas in the input that matches the filter multiplied by 1 MPa + 31.69% of the pressure of the input (ex. 10 MPa input, 20% nitrogen, the single pipe segment on the filtered output would gain 0.2 * (1 + 3.169) = 834 kPa per tick). | ||
| + | |||
| + | In summary, optimizing the operation of the Filtration unit involves pumping the input gas mixture to pressure, and pumping out both output pipe networks to maximize the pressure differential and thus the troughput of the unit. This requires additional power upkeep for the faster filtering procedure. Additionally, the separation between input and output pipe networks would ensure the filtered gas will maintain the same proportion relative to other gases, making the output more consistent . | ||
| + | |||
| + | =See Also= | ||
| + | * [[Air_Filtration_System]] | ||
Latest revision as of 10:31, 18 May 2025
Place the appropriate filter(s) in the Filtration unit for the particular gas that your want to filter. Up to two filters can be placed into a filtration unit. If these are different types of filters, both types of gas will be filtered simultaneously. Placing two of the same type of filter in the unit does not increase filtration speed, it just provides redundancy for when one of the filters runs out. Running the unit with no gas to filter out of the input mixture (or with no input gas mixture present whatsoever) will not drain the filter capacity, but will waste the power to operate it. Running the unit with exhausted filters will work as if no filters are attached, and simply move all the input gas into the waste output.
Be aware that the filtration unit unrealistically has an infinitely powerful pump integrated into its output port. That means as long as it is turned on and there is gas to filter out from the input, it will pump that filtered out gas into the output pipe network (no matter how high the pressure in that output pipe network already is!). So eventually that pipe network will burst (around 60 MPa) unless you provide some sort of pop-off valve (e.g. a combination of a back-pressure regulator and a passive vent), use a pipe analyzer and some logic to turn the filtration unit off when a certain amount of pressure is exceeded in the output pipe network, or use the onboard IC10 and a data connection to the output (tank or pipe analyzer) to disable the unit when it reaches a certain threshold. Note that on-board IC10 chips do not execute when the unit is turned off, so an on-board IC10 is only capable of turning the unit off if output pressure is too high, it is not capable of turning the unit back on once output pressure drops.
As of patch patch 0.2.4218.19726, the filtration system processing speed is based the difference between the pressure of input and higher pressure of the two outputs. If the higher-pressure output is equal to or higher than the input pressure, the unit will process an amount of input gas equivalent to 10 MPa per litre, per tick, with the amount pushed to the two outputs based on the partial pressure of the gas being filtered in the input. For example, if a unit is set to filter nitrogen, and the input is 20% at 10 MPa, and the higher of the two outputs is at >= 10 MPa (for example, if the waste output is connected back to the input), then the unit will push, per tick, 2 MPa-litres (ie. 200 kPa in a single 10 L pipe segment) to the filtered output, and 8 MPa-litres to the waste output.
If the pressure of the highest-pressure output is less than the input pressure, the unit will process per tick will be equal to 10 MPa*L + (PressureDifferential * 3.16885) MPa*L, where the PressureDifferential is the input pressure minus the output pressure, in MPa. As above, this output is split between the filtered output and the waste output based on the partial pressure of the filtered gas in the input. As an example, if the input pressure is 10 MPa at 20% nitrogen, and the higher-pressure of the outputs is at 2 MPa, the unit will process 1 + (10-2) * 3.16885 = 35.351 MPa*L, which is equivalent to increasing the pressure of a single 10 L pipe segment by 3.5351 MPa. 20% of this, or 7.07 MPa*L, would be pushed to the output (if the output is a single 10 L pipe segment, this would increase its pressure by 707 kPa), and the remaining 80% (28.28 MPa*L) would be pushed to the waste output.
In effect, if the waste output is connected to the input, and the filtered output is a single pipe segment (followed by a pump), the rate of output for the filtered gas will be 10 kPa per tick multiplied by the percentage of gas in the input that matches the filter (ex. if 20% nitrogen, 200 kPa to that single pipe segment per tick). If both the outputs are instead single pipe segments fed into volume pumps, so they remain at 0 pressure at all times, the rate of output of the filtered gas will be the percentage of the gas in the input that matches the filter multiplied by 1 MPa + 31.69% of the pressure of the input (ex. 10 MPa input, 20% nitrogen, the single pipe segment on the filtered output would gain 0.2 * (1 + 3.169) = 834 kPa per tick).
In summary, optimizing the operation of the Filtration unit involves pumping the input gas mixture to pressure, and pumping out both output pipe networks to maximize the pressure differential and thus the troughput of the unit. This requires additional power upkeep for the faster filtering procedure. Additionally, the separation between input and output pipe networks would ensure the filtered gas will maintain the same proportion relative to other gases, making the output more consistent .
