Actions

Editing Furnace temperature and pressure math

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 279: Line 279:
  
 
=== Using diluted fuel ===
 
=== Using diluted fuel ===
[[File:Advanced-furnace-gas-mixing.png|thumb|gas mixing for 2H2+O2+dilutant]]
+
 
 
Dirty fuel combusts at a lower temperature, the non-combustible gases also helps to increase the pressure. This can be very useful. Adding unreactive gases to a furnace on purpose means that the combustion temperature will be lower and the pressure higher, which helps when making certain alloys. An excess of either oxygen or volatiles will also count as unreactive since they don't take part in the combustion.
 
Dirty fuel combusts at a lower temperature, the non-combustible gases also helps to increase the pressure. This can be very useful. Adding unreactive gases to a furnace on purpose means that the combustion temperature will be lower and the pressure higher, which helps when making certain alloys. An excess of either oxygen or volatiles will also count as unreactive since they don't take part in the combustion.
  
Line 305: Line 305:
 
*P(after) = P(before) * T(after) * ( 1 + 5.7*min(ratio(O2), ratio(H2)*0.5) ) / T(before)
 
*P(after) = P(before) * T(after) * ( 1 + 5.7*min(ratio(O2), ratio(H2)*0.5) ) / T(before)
 
**this expression comes from two sets of PV=nRT, one after and one before combustion. The reaction formula say that for each mol consumed O2 we gain 6 mol gas (9-3), this creates a link between the equations, n(after) = n(before)*(1+min(ratio(O2), ratio(H2)*0.5)*6), then include the 0.95 efficiency as well
 
**this expression comes from two sets of PV=nRT, one after and one before combustion. The reaction formula say that for each mol consumed O2 we gain 6 mol gas (9-3), this creates a link between the equations, n(after) = n(before)*(1+min(ratio(O2), ratio(H2)*0.5)*6), then include the 0.95 efficiency as well
 +
  
 
=== Using Ice(Oxite) and Ice(Volatiles) ===
 
=== Using Ice(Oxite) and Ice(Volatiles) ===

Please note that all contributions to Unofficial Stationeers Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see Unofficial Stationeers Wiki:Copyrights for details). Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel | Editing help (opens in new window)